Intelligent optimal control with dynamic neural networks

نویسندگان

  • Yasar Becerikli
  • Ahmet Ferit Konar
  • Tariq Samad
چکیده

The application of neural networks technology to dynamic system control has been constrained by the non-dynamic nature of popular network architectures. Many of difficulties are-large network sizes (i.e. curse of dimensionality), long training times, etc. These problems can be overcome with dynamic neural networks (DNN). In this study, intelligent optimal control problem is considered as a nonlinear optimization with dynamic equality constraints, and DNN as a control trajectory priming system. The resulting algorithm operates as an auto-trainer for DNN (a self-learning structure) and generates optimal feed-forward control trajectories in a significantly smaller number of iterations. In this way, optimal control trajectories are encapsulated and generalized by DNN. The time varying optimal feedback gains are also generated along the trajectory as byproducts. Speeding up trajectory calculations opens up avenues for real-time intelligent optimal control with virtual global feedback. We used direct-descent-curvature algorithm with some modifications (we called modified-descend-controller-MDC algorithm) for the optimal control computations. The algorithm has generated numerically very robust solutions with respect to conjugate points. The adjoint theory has been used in the training of DNN which is considered as a quasi-linear dynamic system. The updating of weights (identification of parameters) are based on Broyden-Fletcher-Goldfarb-Shanno BFGS method. Simulation results are given for an intelligent optimal control system controlling a difficult nonlinear second-order system using fully connected three-neuron DNN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

Diagnosis Prediction of Lichen Planus, Leukoplakia and Oral Squamous Cell Carcinoma by using an Intelligent System Based on Artificial Neural Networks

Introduction: Diagnosis, prediction and control of oral lesions is usually done classically based on clinical signs and histopathologic features. Due to lack of timely diagnosis in all conventional methods or differential diagnosis, biopsy of patient is needed. Therefore, the patient might be irritated. So, an intelligent method for quick and accurate diagnosis would be crucial. Intelligent sys...

متن کامل

A DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing

One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2003